
MATH 245 F19, Exam 1 Solutions

1. Carefully define the following terms: prime, Double Negation Theorem, Conditional
Interpretation Theorem.

Let n ∈ N with n ≥ 2. If there is NO a ∈ N with 1 < a < n and a|n, then we
call n prime. The Double Negation Theorem states: Let p be a proposition. Then
p ≡ ¬¬p. The Conditional Interpretation Theorem states: Let p, q be propositions.
Then p→ q ≡ q ∨ ¬p.

2. Carefully define the following terms: Addition Semantic Theorem, Vacuous Proof The-
orem, contrapositive
The Addition Semantic Theorem states: Let p, q be propositions. p ` p∨ q. The Vacu-
ous Proof Theorem states: Let p, q be propositions. (¬p) ` (p→ q). The contrapositive
of the compound proposition p→ q is the proposition (¬q)→ (¬p).

3. Let p, q be propositions. Prove or disprove: (p ∧ q)→ (p→ q) is a tautology.

The statement is true. Because the fifth
column of the truth table (to the right) is
all T , the proposition (p∧ q)→ (p→ q) is
a tautology.

p q p ∧ q p→ q (p ∧ q)→ (p→ q)
T T T T T
T F F F T
F T F T T
F F F T T

4. Let m,n ∈ Z. Prove or disprove: If m|n, then m|n2.

The statement is true. Suppose that m|n. Then there is some s ∈ Z with ms = n.
Multiplying both sides by n, we have m(sn) = n2. Since sn ∈ Z (being the product of
two integers), we must have m|n2.

5. Let m,n ∈ N0 with n ≥ m. Evaluate and fully simplify
(n+1

m )
(n
m)

.

We have
(n+1

m )
(n
m)

=
(n+1)!

m!(n+1−m)!
n!

m!(n−m)!

= (n+1)!m!(n−m)!
m!(n+1−m)!n!

= (n+1)n!m!(n−m)!
m!(n+1−m)(n−m)!n!

= n+1
n+1−m

. If desired,

this can be also written as n+1−m+m
n+1−m

= 1 + m
n+1−m

.

6. Prove or disprove: For arbitrary x, y ∈ R, if x, y are both rational, then x+y
2

is rational.

The statement is true, and we give a direct proof. We assume that x, y are rational.
Hence there are integers a, b, c, d, with b, d 6= 0, such that x = a

b
and y = c

d
. Now,

x+y
2

=
a
b
+ c

d

2
= ad+bc

2bd
. Now, ad+bc, 2bd are both integers, and 2bd 6= 0, so x+y

2
is rational.

7. Fix our domain to be R. Simplify the proposition ¬(∀x ∃y ∀z, x < y ≤ z) as much as
possible (where nothing is negated).

We begin by pulling ¬ inside the quantifiers, getting ∃x ∀y ∃z ¬(x < y ≤ z).
Note that x < y ≤ z ≡ (x < y) ∧ (y ≤ z), so we apply De Morgan’s law to
get ∃x ∀y ∃z (¬(x < y)) ∨ (¬(y ≤ z)). Lastly, we simplify the inequalities to get
∃x ∀y ∃z (x ≥ y)∨ (y > z). Note that this can NOT be written as a double inequality.



8. State and prove modus ponens, using semantic theorems only (no truth tables).
Thm: Let p, q be propositions. Then p→ q, p ` q.
Pf 1: We assume p → q and p. By conditional interpretation, q ∨ ¬p. By double
negation, ¬¬p. By disjunctive syllogism, q.
Pf 2: We assume p→ q and p. We have p→ q ≡ (¬q)→ (¬p), its contrapositive. By
double negation, ¬¬p. By modus tollens, ¬¬q. By double negation again, q.

9. Prove or disprove the proposition ∀x ∈ N, ∃y ∈ N, x2 < y < (x + 1)2.

The statement is true. Let x ∈ N be arbitrary. Take y = x2 + 1. Note that y − x2 =
1 ∈ N0, so x2 ≤ y. But also x2 6= y, since y − x2 6= 0. Hence x2 < y. Now,
(x + 1)2 − y = (x2 + 2x + 1) − (x2 + 1) = 2x. Since x ∈ N, 2x ∈ N, so (x + 1)2 ≥ y.
But also (x + 1)2 6= y, since 2x 6= 0. Hence (x + 1)2 > y.

10. Let p, q be propositions. Find a compound proposition, using the operator nand (↑)
exactly three times (and no other operators), that is logically equivalent to p ∨ q. Prove
your answer.

The desired proposition is (p ↑ p) ↑ (q ↑ q);
its equivalence to p ∨ q is proved by the
agreement of the fifth and sixth columns
of the truth table at right.
Note: this was (part of) exercise 2.17.

p q p ↑ p q ↑ q (p ↑ p) ↑ (q ↑ q) p ∨ q
T T F F T T
T F F T T T
F T T F T T
F F T T F F


