MATH 245 F19, Exam 1 Solutions

1. Carefully define the following terms: prime, Double Negation Theorem, Conditional Interpretation Theorem.
Let $n \in \mathbb{N}$ with $n \geq 2$. If there is NO $a \in \mathbb{N}$ with $1<a<n$ and $a \mid n$, then we call n prime. The Double Negation Theorem states: Let p be a proposition. Then $p \equiv \neg \neg p$. The Conditional Interpretation Theorem states: Let p, q be propositions. Then $p \rightarrow q \equiv q \vee \neg p$.
2. Carefully define the following terms: Addition Semantic Theorem, Vacuous Proof Theorem, contrapositive
The Addition Semantic Theorem states: Let p, q be propositions. $p \vdash p \vee q$. The Vacuous Proof Theorem states: Let p, q be propositions. $(\neg p) \vdash(p \rightarrow q)$. The contrapositive of the compound proposition $p \rightarrow q$ is the proposition $(\neg q) \rightarrow(\neg p)$.
3. Let p, q be propositions. Prove or disprove: $(p \wedge q) \rightarrow(p \rightarrow q)$ is a tautology.

The statement is true. Because the fifth
$\begin{array}{l}\text { The } \\ \text { column of the truth table (to the right) is }\end{array}$
1

T	F	F	F	T

F	T	F	T	T

F	F	F	T	T

4. Let $m, n \in \mathbb{Z}$. Prove or disprove: If $m \mid n$, then $m \mid n^{2}$.

The statement is true. Suppose that $m \mid n$. Then there is some $s \in \mathbb{Z}$ with $m s=n$. Multiplying both sides by n, we have $m(s n)=n^{2}$. Since $s n \in \mathbb{Z}$ (being the product of two integers), we must have $m \mid n^{2}$.
5. Let $m, n \in \mathbb{N}_{0}$ with $n \geq m$. Evaluate and fully simplify $\frac{\binom{n+1}{m}}{\binom{n}{m}}$.

We have $\frac{\binom{n+1}{m}}{\binom{n}{m}}=\frac{\left.\frac{(n+1)!}{m!(n+1)!}\right)}{m!(n-m)!}=\frac{(n+1)!m!(n-m)!}{m!(n+1-m)!n!}=\frac{(n+1) n!m!(n-m)!}{m!(n+1-m)(n-m)!n!}=\frac{n+1}{n+1-m}$. If desired, this can be also written as $\frac{n+1-m+m}{n+1-m}=1+\frac{m}{n+1-m}$.
6. Prove or disprove: For arbitrary $x, y \in \mathbb{R}$, if x, y are both rational, then $\frac{x+y}{2}$ is rational.

The statement is true, and we give a direct proof. We assume that x, y are rational. Hence there are integers a, b, c, d, with $b, d \neq 0$, such that $x=\frac{a}{b}$ and $y=\frac{c}{d}$. Now, $\frac{x+y}{2}=\frac{\frac{a}{b}+\frac{c}{d}}{2}=\frac{a d+b c}{2 b d}$. Now, $a d+b c, 2 b d$ are both integers, and $2 b d \neq 0$, so $\frac{x+y}{2}$ is rational.
7. Fix our domain to be \mathbb{R}. Simplify the proposition $\neg(\forall x \exists y \forall z, x<y \leq z)$ as much as possible (where nothing is negated).
We begin by pulling \neg inside the quantifiers, getting $\exists x \forall y \exists z \neg(x<y \leq z)$. Note that $x<y \leq z \equiv(x<y) \wedge(y \leq z)$, so we apply De Morgan's law to get $\exists x \forall y \exists z(\neg(x<y)) \vee(\neg(y \leq z))$. Lastly, we simplify the inequalities to get $\exists x \forall y \exists z(x \geq y) \vee(y>z)$. Note that this can NOT be written as a double inequality.
8. State and prove modus ponens, using semantic theorems only (no truth tables).

Thm: Let p, q be propositions. Then $p \rightarrow q, p \vdash q$.
Pf 1: We assume $p \rightarrow q$ and p. By conditional interpretation, $q \vee \neg p$. By double negation, $\neg \neg p$. By disjunctive syllogism, q.
Pf 2: We assume $p \rightarrow q$ and p. We have $p \rightarrow q \equiv(\neg q) \rightarrow(\neg p)$, its contrapositive. By double negation, $\neg \neg p$. By modus tollens, $\neg \neg q$. By double negation again, q.
9. Prove or disprove the proposition $\forall x \in \mathbb{N}, \exists y \in \mathbb{N}, x^{2}<y<(x+1)^{2}$.

The statement is true. Let $x \in \mathbb{N}$ be arbitrary. Take $y=x^{2}+1$. Note that $y-x^{2}=$ $1 \in \mathbb{N}_{0}$, so $x^{2} \leq y$. But also $x^{2} \neq y$, since $y-x^{2} \neq 0$. Hence $x^{2}<y$. Now, $(x+1)^{2}-y=\left(x^{2}+2 x+1\right)-\left(x^{2}+1\right)=2 x$. Since $x \in \mathbb{N}, 2 x \in \mathbb{N}$, so $(x+1)^{2} \geq y$. But also $(x+1)^{2} \neq y$, since $2 x \neq 0$. Hence $(x+1)^{2}>y$.
10. Let p, q be propositions. Find a compound proposition, using the operator nand (\uparrow) exactly three times (and no other operators), that is logically equivalent to $p \vee q$. Prove your answer.

The desired proposition is $(p \uparrow p) \uparrow(q \uparrow q)$; its equivalence to $p \vee q$ is proved by the agreement of the fifth and sixth columns of the truth table at right.

p	q	$p \uparrow p$	$q \uparrow q$	$(p \uparrow p) \uparrow(q \uparrow q)$	$p \vee q$
T	T	F	F	T	T
T	F	F	T	T	T
F	T	T	F	T	T
F	F	T	T	F	F

